|
|
S01.00001: Super-resolution of Finite Element spaces using Physics-informed Deep Learning Networks for Turbulent flows
Aniruddhe Pradhan, Rajarshi Biswas, Karthik Duraisamy
Preview Abstract |
|
|
S01.00002: Dispersed Multiphase Flow Generation using 3D Steerable Convolutional Neural Network
Bhargav Sriram Siddani, S. Balachandar, Ruogu Fang, William Chandler Moore, Yunchao Yang
Preview Abstract |
|
|
S01.00003: Deep Reinforcement Learning for Control of Fuel Injection in Compression Ignition Engines
Nicholas Wimer, Marc Henry de Frahan, Shashank Yellapantula, Ray Grout
Preview Abstract |
|
|
S01.00004: Performance Bounds of Data-Driven Reynolds Stress Models via Optimal Tensor Basis Expansions
Andrew J. Banko, Christopher J. Elkins, John K. Eaton
Preview Abstract |
|
|
S01.00005: Using generative adversarial networks for subfilter modeling of turbulent flows
Mathis Bode
Preview Abstract |
|
|
S01.00006: Predictions in Wall-bounded Turbulence Through Convolutional-network Models Using Wall Quantities
Luca Guastoni, Alejandro G\"uemes, Andrea Ianiro, Stefano Discetti, Philipp Schlatter, Hossein Azizpour, Ricardo Vinuesa
Preview Abstract |
|
|
S01.00007: SimNet: A neural network solver for multi-Physics applications
Oliver Hennigh, Kaustubh Tangsali, Akshay Subramaniam, Susheela Narasimhan, Mohammad Nabian, Jose del Aguila Ferrandis, Sanjay Choudhry
Preview Abstract |
|
|
S01.00008: Generalization of Machine Learning Criteria for Ignition Prediction
Faustino Martinez, Pavel Popov
Preview Abstract |
|
|
S01.00009: Learning minimal representations for chaotic dynamics of partial differential equations
Alec J. Linot, Michael D. Graham
Preview Abstract |
|
|
S01.00010: Flowtaxis in the wakes of oscillating airfoils
Haotian Hang, Sina Heydari, Brendan Colvert, Eva Kanso
Preview Abstract |
|
|
S01.00011: Physics-informed Autoencoders for Operator-theoretic decomposition and Model reduction of Complex Flows
Karthik Duraisamy, Shaowu Pan
Preview Abstract |
|
|
S01.00012: Fast solver of the shallow water equations with application to estimation of the riverine surface flow velocity
Mojtaba Forghani, Yizhou Qian, Peter Kitanidis, Matthew Farthing, Tyler Hesser, Jonghyun Lee, Eric Darve
Preview Abstract |
|
|
S01.00013: Deep learning to predict the effectiveness factor in the closure problems
Ehsan Taghizadeh, Paul Macklin, Helen Byrne, Brian Wood
Preview Abstract |
|
|
S01.00014: Embedded training of neural-network sub-grid-scale turbulence models
Justin Sirignano, Jonathan MacArt, Jonathan Freund
Preview Abstract |
|
|
S01.00015: Deep learning-based assignment of combustion submodels for large-eddy simulation
Wai Tong Chung, Aashwin Mishra, Nikolaos Perakis, Matthias Ihme
Preview Abstract |
|
|
S01.00016: Embedding Physics as Hard Constraints in Generative Adversarial Networks for 3D Turbulence
Dima Tretiak, Arvind Mohan, Daniel Livescu
Preview Abstract |
|
|
S01.00017: Dynamic Masking of PIV Images using Deep Learning
Bernhard Vennemann, Thomas Rösgen
Preview Abstract |
|
|
S01.00018: Pollution Source Localization Using Physics-Driven Deep Neural Net
Roshan D'Souza, Isaac Perez-Raya
Preview Abstract |
|
|
S01.00019: LES Turbulence Model with Learnt Closure; Integration of DNN into a CFD Solver
Majid Haghshenas, Peetak Mitra, Niccolo Dal Santo, Mateus Dias Ribeiro, Shounak Mitra, David Schmidt
Preview Abstract |
|
|
S01.00020: Deep learning-based shadowgraph: implementation of Mask R-CNN to bubble detection in complex two-phase
Yewon Kim, Hyungmin Park
Preview Abstract |
|
|
S01.00021: A hybrid data-driven deep learning technique for fluid-structure interaction
Rajeev Jaiman, Tharindu Miyanawala
Preview Abstract |
|
|
S01.00022: Learning to write and paint using a liquid rope trick
Gaurav Chaudhary, Stephanie Christ, A. John Hart, L. Mahadevan
Preview Abstract |
|
|
S01.00023: Inference on spatially unstructured flow fields using Graph Neural Networks
Francis Ogoke, Kazem Meidani, Amirreza Hashemi, Amir Barati Farimani
Preview Abstract |
|
|
S01.00024: Machine Learning Statistical Lagrangian Geometry of Turbulence
Criston Hyett, Michael Chertkov, Yifeng Tian, Daniel Livescu
Preview Abstract |
|
|
S01.00025: Modeling active fluids via physically constrained machine learning
Matthew Golden, Jyothishraj Nambisan, Alberto Fernandez-Nieves, Roman Grigoriev
Preview Abstract |
|
|
S01.00026: Reconstruction of Turbulent High-resolution DNS Data Using Deep Learning
Pranshu Pant, Amir Barati Farimani
Preview Abstract |
|
|
S01.00027: Machine Learning of Reduced Lagrangian Models of Turbulence
Michael Woodward, Yifeng Tian, Michael Chertkov, Mikhail Stepanov, Daniel Livescu, Chris Fryer
Preview Abstract |
|
|
S01.00028: Physics-informed Machine Learning of the Lagrangian Dynamics of Velocity Gradient Tensor
Yifeng Tian, Daniel Livescu, Michael Chertkov
Preview Abstract |
|
|
S01.00029: Learning Physics-based Galerkin models of turbulence with Neural Differential Equations
Arvind Mohan, Kaushik Nagarajan, Daniel Livescu
Preview Abstract |
|
|
S01.00030: Designing networks to accurately learn 2D turbulence closures
Keaton Burns, Ronan Legin, Adrian Liu, Laurence Perreault-Levasseur, Yashar Hezaveh, Siamak Ravanbakhsh, Gregory Wagner
Preview Abstract |
|
|
S01.00031: Turbulence closure modeling with machine-learning methods: Influence of choice of neural network and training procedure
Salar Taghizadeh, Yassin Hassan, Freddie Witherden, Sharath Girimaji
Preview Abstract |
|
|
S01.00032: Turbulence closure modeling with Machine-Learning Methods: Can RANS overcome curse of averaging?
Sharath Girimaji
Preview Abstract |
|
|
S01.00033: A Deep Learning Based Physics Informed Continuous Spatio Temporal Super-Resolution Framework
Soheil Esmaeilzadeh, Chiyu Max Jiang, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A. Tchelepi, Philip Marcus, Mr Prabhat, Anima Anandkumar
Preview Abstract |
|
|
S01.00034: Developing an automatic calibration tool for turbulence closure models using machine learning techniques
Ismael Boureima, Vitaliy Gyrya, Juan Saenz, Susan Kurien
Preview Abstract |