Bulletin of the American Physical Society
57th Annual Meeting of the APS Division of Plasma Physics
Volume 60, Number 19
Monday–Friday, November 16–20, 2015; Savannah, Georgia
Session AR1: Review: The Physics of the Laboratory MagnetosphereInvited Session
|
Hide Abstracts |
Chair: Earl Scime, West Virginia University Room: Chatham Ballroom AB |
Monday, November 16, 2015 8:00AM - 9:00AM |
AR1.00001: The Physics of the Laboratory Magnetosphere Invited Speaker: Michael Mauel During the past decade, experiments and simulations have characterized a new regime of high-beta toroidal plasma confinement using unique facilities, called laboratory magnetospheres. In a laboratory magnetosphere, a large plasma is confined by a relatively small, magnetically levitated, superconducting current ring. Nonlinear processes, including the inverse cascade of turbulent fluctuations and turbulent self-organization, are studied and controlled in near steady-state conditions. Because a dipole's magnetic field lines resemble the inner regions of planetary magnetospheres, these studies link laboratory and space plasma physics. However, unlike planetary magnetospheres, the magnetic field lines from a levitated dipole are axisymmetric and closed, imparting unique properties to the laboratory magnetosphere. A levitated dipole confines plasma without field-aligned currents, even when plasma pressure exceeds the local magnetic pressure ($\beta > 1$). Particle drifts are omnigeneous, and the dynamics of passing and trapped particles are similar. Because parallel currents can be a source for instability, many well-known low-frequency instabilities found in other toroidal configurations, like kink, tearing, ballooning, and drift modes, are not found in a dipole plasma torus. Instead, interchange and entropy modes, which resonate with bounce-averaged magnetic drifts, dominate plasma dynamics. This review emphasizes observations from the levitated dipole experiments at MIT and at the University of Tokyo, shows the application of gyrokinetic simulations and bounce-averaged fluid models with drift-kinetic closures to model the physics of the up-gradient turbulent pinch, describes the structure and chaotic dynamics of interchange and entropy mode instability, and introduces opportunities to apply the new physics of the laboratory magnetosphere to explore turbulent transport processes within a large quasi-steady magnetized plasma torus. [Preview Abstract] |
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2025 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
100 Motor Pkwy, Suite 110, Hauppauge, NY 11788
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700