57th Annual Meeting of the APS Division of Plasma Physics 
Volume 60, Number 19
Monday–Friday, November 16–20, 2015;
Savannah, Georgia
Session GP12: Poster Session III (Plasma Accelerators and Radiation: NSTX-U, ST, and International MFE)
Tuesday, November 17, 2015
Room: Exhibit Hall A
Abstract ID: BAPS.2015.DPP.GP12.117
Abstract: GP12.00117 : Physics of Plasma Cathode Current Injection During LHI*
Preview Abstract
  
  Abstract  
Authors:
E.T. Hinson
(UW-Madison)
J. Barr
(UW-Madison)
M. Bongard
(UW-Madison)
M.G. Burke
(UW-Madison)
R. Fonck
(UW-Madison)
J. Perry
(UW-Madison)
Localized helicity injection (LHI) ST startup employs current sources at the 
tokamak edge. Max $I_{\mathrm{p}}$ in LHI scales with injection voltage 
$V_{\mathrm{inj}}$, requiring an understanding of injector impedance. For the 
arc-plasma cathode electron injectors in Pegasus, impedance is 
plasma-determined, and typically $V_{\mathrm{inj}}$\textgreater 1kV for 
$I_{\mathrm{inj}}=$2kA. At low $I_{\mathrm{inj}}$, 
$I_{\mathrm{inj}}\propto V_{\mathrm{inj}}^{\mathrm{3/2}}$, an indication 
of a double layer (DL) common to such devices. However, at 
$I_{\mathrm{inj}}$\textgreater $\sim $1kA, $I_{\mathrm{inj}}\propto 
V_{\mathrm{inj}}^{\mathrm{1/2}}$ occurs, a scaling expected for limited 
launched beam density, $n_{b} \equiv {I_{inj} } \mathord{\left/ {\vphantom 
{{I_{inj} } {(e\sqrt {{2eV_{inj} } \mathord{\left/ {\vphantom {{2eV_{inj} } 
{m_{e} }}} \right. \kern-\nulldelimiterspace} {m_{e} }} A_{inj} )}}} \right. 
\kern-\nulldelimiterspace} {(e\sqrt {{2eV_{inj} } \mathord{\left/ {\vphantom 
{{2eV_{inj} } {m_{e} }}} \right. \kern-\nulldelimiterspace} {m_{e} }} 
A_{inj} )}\sim I_{\mathrm{inj}}$/$V_{\mathrm{inj}}^{\mathrm{1/2}}$. An 
ohmic discharge injection target was created to test this hypothesis. 
Langmuir probe data showed 
$I_{\mathrm{inj}}$/$V_{\mathrm{inj}}^{\mathrm{1/2}}\propto 
n_{\mathrm{edge}}$ at low $n_{\mathrm{edge}}$, consistent with a limit 
($n_{\mathrm{edge}}\ge n_{\mathrm{e,b}})$ imposed by quasineutrality. If 
edge fueling maintained $n_{\mathrm{edge}}\ge n_{\mathrm{e,b}}$, 
spectroscopic measurements of source density $n_{\mathrm{arc}}$ indicated 
$I_{\mathrm{inj}}$/$V_{\mathrm{inj}}^{\mathrm{1/2}}\propto 
n_{\mathrm{arc}}$, as expected from DL expansion. Thus $n_{\mathrm{b}}$ 
established by $n_{\mathrm{arc}}$ or $n_{\mathrm{edge}}$ determines 
$V_{\mathrm{inj}}$ up to the onset of cathode spot (CS) arcing. Technology 
development has increased obtainable V$_{\mathrm{inj}}$ and reduced CS 
damage using new ring shielding and a cathode design drawing CS's away from 
insulators. This involved a novel optimization of conical frustum geometry. 
Finally, consistent with NIMROD predictions of coherent streams in the edge 
during LHI, pairwise triangulation of outboard Mirnov data assuming beam 
m$=$1 motion has allowed an estimate of beam R(t), Z(t) location that is 
near the injector R, and consistent across the array.
*Supported by U.S. DOE Grant DE-FG02-96ER54375
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2015.DPP.GP12.117