Bulletin of the American Physical Society
APS March Meeting 2020
Volume 65, Number 1
Monday–Friday, March 2–6, 2020; Denver, Colorado
Session J45: Emerging Trends in Molecular Dynamics Simulations and Machine Learning I
2:30 PM–5:30 PM,
Tuesday, March 3, 2020
Room: 706
Sponsoring
Units:
DCOMP GDS DSOFT DPOLY
Chair: Priya Vashishta, University of Southern California
Abstract: J45.00012 : Accurate and Data-Efficient Machine Learning Force Fields for Periodic Systems
Presenter:
Luis Gálvez-González
(Programa de Doctorado en Ciencias (Física), Universidad de Sonora)
Authors:
Luis Gálvez-González
(Programa de Doctorado en Ciencias (Física), Universidad de Sonora)
Huziel Sauceda
(Machine Learning Group, Technische Universität Berlin)
Stefan Chmiela
(Machine Learning Group, Technische Universität Berlin)
Alvaro Posada-Amarillas
(Departamento de Investigación en Física, Universidad de Sonora)
Lauro Oliver Paz-Borbón
(Instituto de Física, Universidad Nacional Autónoma de México)
Klaus-Robert Müller
(Machine Learning Group, Technische Universität Berlin)
Alexandre Tkatchenko
(Physics and Materials Science Research Unit, University of Luxembourg)
[1] Chmiela et al. Sci. Adv. 3 (5), e1603015 (2017); Nat. Commun. 9 (1), 3887 (2108); Comput. Phys. Commun. 240, 38 (2019).
[2] Sauceda et al. J. Chem. Phys. 150 (11), 114102 (2019); arXiv:1909.08565 (2019).
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2024 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
100 Motor Pkwy, Suite 110, Hauppauge, NY 11788
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700