Bulletin of the American Physical Society
APS March Meeting 2018
Volume 63, Number 1
Monday–Friday, March 5–9, 2018; Los Angeles, California
Session X22: Spin-Orbit Effects at Metal/Insulator Interfaces
8:00 AM–11:00 AM,
Friday, March 9, 2018
LACC
Room: 402A
Sponsoring
Units:
GMAG DMP FIAP
Chair: Can Onur Avci, Massachusetts Institute of Technology-MIT
Abstract ID: BAPS.2018.MAR.X22.13
Abstract: X22.00013 : Impact of the magnetic sublattice configuration on the Spin-Hall Magnetoresistance
10:48 AM–11:00 AM
Presenter:
Nynke Vlietstra
(Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)
Authors:
Nynke Vlietstra
(Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)
Kathrin Ganzhorn
(Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)
Johanna Fischer
(Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)
Matthias Althammer
(Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)
Hans Huebl
(Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)
Matthias Opel
(Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)
Stephan Geprägs
(Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)
Sebastian Goennenwein
(Institut für Festkörperphysik, Technische Universität Dresden)
Rudolf Gross
(Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)
Initially, the SMR was studied in the collinear ferrimagnetic insulating YIG, where the SMR was explained by assuming a single magnetic subsystem, which easily aligns with a magnetic field. Later, the SMR was also reported in more complex magnetic insulating systems, such as Gd3Fe5O12 (GdIG, canted ferrimagnet)[3] and NiO (anti-ferromagnet)[4]. It was found that each magnetic sublattice contributes separately to the SMR, and it therefor reveals information about the magnetic state of the material.
By comparing the SMR signals from YIG, GdIG and NiO, it is possible to explain the observed differences in behavior. This includes a sign change in the SMR signal, appearing in the canted phase in GdIG, as well as a negative signal (compared to YIG) in all cases for NiO, explained by its magnetic domain structure.
[1]H. Nakayama et al., Phys. Rev. Lett. 110, 206601 (2013)
[2]N. Vlietstra et al., Phys. Rev. B 87, 184421 (2013)
[3]K. Ganzhorn et al., Phys. Rev. B 94, 094401 (2016)
[4]J. Fischer et al., arXiv: 1709.04158 (2017)
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2018.MAR.X22.13
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2024 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
100 Motor Pkwy, Suite 110, Hauppauge, NY 11788
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700