Bulletin of the American Physical Society
APS March Meeting 2015
Volume 60, Number 1
Monday–Friday, March 2–6, 2015; San Antonio, Texas
Session G46: Invited Session: Ovshinsky Award Session - A Legacy of Energy Technologies |
Hide Abstracts |
Sponsoring Units: GERA Chair: David Ginley, National Renewable Energy Laboratory Room: 217A |
Tuesday, March 3, 2015 11:15AM - 11:51AM |
G46.00001: Deterministic Modelling of Carbon Nanotube Near-Infrared Solar Cells Invited Speaker: Darin Bellisario With solution-process-ability, scale-able fabrication and purification, and cheap input materials, semiconducting single-walled carbon nanotube (SWNT) networks represent promising materials for near-IR solar cell (SC) applications. This promise has motivated a body of work not only developing solar cells but also exploring alignment/deposition methods and SWNT photovoltaic (PV) physics. Despite this interest, there is to date no quantitative model of SWNT solar cell operation analogous to bulk semiconductor p-n junction PVs, allowing a rigorous understanding of the physical tradeoffs driving experimental observations and informing what research will enable technological progress. In this work we have derived the steady state operation of planar heterojunction SWNT PVs from the fundamental light absorption, exciton transport, and free carrier transport behaviors of single nanotubes. Our method can treat arbitrary distributions of nanotube chiralities, lengths, orientations, defect types and concentration, bundle fraction and size, density, dielectric environment, electrode combinations, etc. We achieve this by treating individual SWNT properties as random variables, and describing the network by the dependent distributions of those properties, yielding coupled stochastic differential equations for light absorption, exciton transport, and free carrier transport. Applying the model to monochiral (6,5) films in aligned and isotropic configurations, we find that there is a strongly optimal film thickness at a given nanotube network density and orientation, reflecting an inherent tradeoff between light absorption (i.e. exciton generation) and diffusion to the electrodes. This optimal shifts lower with increasing density, and is ultra-thin (\textless 10 nm) for horizontally-aligned films but 50-200 nm for vertically aligned films. We show that due to weak inter-SWNT exciton transport relative to exceptional intra-SWNT diffusion, vertically-aligned films are unambiguously favored at densities above 3{\%} of close-packed; at lower densities however an optimum emerges at an intermediate angle to compensate for weaker light absorption of vertical nanotubes. Films with in-plane aligned nanotubes are unambiguously the worst design. [Preview Abstract] |
Tuesday, March 3, 2015 11:51AM - 12:27PM |
G46.00002: Exotic Forms of Silicon for Energy Applications Invited Speaker: P. Craig Taylor Over the last few decades many exotic forms of carbon, such as carbon-60, carbon nanotubes, and graphene, have generated novel scientific discoveries and revolutionized many important applications. Similar potentially transformative breakthroughs may be expected with exotic forms of silicon. Such structures include, but are not necessarily limited to, (1) those formed under high pressure that are metastable at ambient pressure, (2) single layers of Si (silicene), (2) clathrate Si, which has been studied for superconducting and thermoelectric properties but not in any detail for semiconductor applications, (3) nanostructured forms of Si (nanodots and nanowires), including those composed of diamond Si, (4) porous Si, and (5) any other structures that differ in their structural, optical or electronic properties from bulk diamond Si. Silicon is an abundant, non-toxic element around which an advanced technology exists for semiconducting devices based on diamond Si. One of these exotic forms of Si could form the basis for the next revolution in electronics or even opto-electronics, since some forms exhibit direct, or nearly direct, band gaps. Recent results toward producing pure and dopable semiconductors out of Si nanodots imbedded in amorphous matrices and in clathrate Si and clathrate Si-Ge alloys will be discussed. [Preview Abstract] |
Tuesday, March 3, 2015 12:27PM - 1:03PM |
G46.00003: Ultrafast response of phase-change memory materials Invited Speaker: Aaron Lindenberg We describe recent experiments probing the first steps in the amorphous-to-crystalline transition that underlies the behavior of phase-change materials, examining both electric-field-driven and optically-driven responses in GeSbTe and AgInSbTe alloys. First measurements using femtosecond x-ray pulses at the Linac Coherent Light Source will be described which enable direct snapshots of these transitions and associated intermediate states. We will also describe studies using single-cycle terahertz pulses as an all-optical means of biasing phase-change materials on femtosecond time-scales in order to examine the threshold-switching response on microscopically relevant time-scales. These studies indicate nonlinear scaling with the applied electric field and field-induced crystallization as evidenced by ultrafast optical reflectivity and conductivity measurements, from which a mechanistic understanding of these phase transitions can be obtained. [Preview Abstract] |
Tuesday, March 3, 2015 1:03PM - 1:39PM |
G46.00004: Metal Hydride Batteries for Energy Storage Invited Speaker: Tetsuo Sakai |
Tuesday, March 3, 2015 1:39PM - 2:15PM |
G46.00005: Frontiers, Opportunities and Challenges for a Hydrogen Economy Invited Speaker: John Turner Energy carriers are the staple for powering the society we live in. Coal, oil, natural gas, gasoline and diesel all carry energy in chemical bonds, used in almost all areas of our civilization. But these carriers have a limited-use lifetime on this planet. They are finite, contribute to climate change and carry significant geopolitical issues. If mankind is to maintain and grow our societies, new energy carriers must be developed and deployed into our energy infrastructure. Hydrogen is the simplest of all the energy carriers and when refined from water using renewable energies like solar and wind, represents a sustainable energy carrier, viable for millennia to come. This talk with discuss the challenges for sustainable production of hydrogen, along with the promise and possible pathways for implementing hydrogen into our energy infrastructure. [Preview Abstract] |
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2024 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
100 Motor Pkwy, Suite 110, Hauppauge, NY 11788
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700