#
APS March Meeting 2010

## Volume 55, Number 2

##
Monday–Friday, March 15–19, 2010;
Portland, Oregon

### Session S1: Poster Session III (1:00 pm - 4:00 pm)

1:00 PM,
Wednesday, March 17, 2010

Room: Exhibit CD

Abstract ID: BAPS.2010.MAR.S1.197

### Abstract: S1.00197 : Mass, Energy, Space And Time Systemic Theory--MEST-- heat and cold, positive electron and negative electron

Preview Abstract
Abstract

####
Author:

Dayong Cao

(Beijing Natural Providence Science \& Technology Development Co., Ltd)

Things have their physical system of the mass,energy, space and
time of
themselves-MEST. The time is from the frequency of wave, the spac
is from
the amplitude of wave. Also they have different space-time and
MEST of
themselves, but all of them have the balance system of MEST
In the solar system, there is the ``quantization'' model of the
planets, $
V^2\approx \frac{1}{n^2}0.92\times
10^4km^2/s^2,{\begin{array}{*{20}c}
\hfill \\
\end{array} }r\approx n^2\times 14.5\times
10^6km,{\begin{array}{*{20}c}
\hfill \\
\end{array} }2\pi t\approx n^2\times 1.89\times
10^6s,(n=2,{\begin{array}{*{20}c}
\hfill \\
\end{array} }3,{\begin{array}{*{20}c}
\hfill \\
\end{array} }4...)$
And there is the balance energy equation of planet (with a Round
revolution
orbit), $
\frac{1}{2}mv^2+m'c^2=-G\frac{Mm}{r},{\begin{array}{*{20}c}
\hfill \\
\end{array} }\frac{1}{2}mv^2=\frac{1}{2n^2}mv_0
^2,{\begin{array}{*{20}c}
\hfill \\
\end{array} }m'c^2=\frac{1}{n^2}m_0 'c^2,{\begin{array}{*{20}c}
\hfill \\
\end{array} }G\frac{Mm}{r}=\frac{1}{n^2}G\frac{Mm}{r_0 }.$
Among it, ``$m'c^2$'' is the energy of space-time of planet,
``$\frac{1}{2}mv^2$'' is the kinetic energy of planet,
``$G\frac{mM}{r}$''
is potential energy of planet.
In atomic system, there is the ``quantization'' model of the
electron, $
v_e ^2\approx \frac{1}{n^2}v_0 ^2,{\begin{array}{*{20}c}
\hfill \\
\end{array} }r_e \approx n^2r_{e0} ,{\begin{array}{*{20}c}
\hfill \\
\end{array} }2\pi t_e \approx n^22\pi t_{e0}
(n=2,{\begin{array}{*{20}c}
\hfill \\
\end{array} }3,{\begin{array}{*{20}c}
\hfill \\
\end{array} }4...)$
And there is the balance energy equation of the electron of
Hydrogen (with a
Round revolution orbit), $
\frac{1}{2}m_e v_e ^2+m_e 'c^2=-\frac{1}{4\pi \varepsilon _0
}\frac{q_1 q_2
}{r_e },{\begin{array}{*{20}c}
\hfill \\
\end{array} }\frac{1}{2}m_e v_e ^2=\frac{1}{2n^2}m_{e0} v_{e0}
^2,{\begin{array}{*{20}c}
\hfill \\
\end{array} }m_e 'c^2=\frac{1}{n^2}m_{e0} 'c^2,{\begin{array}{*{20}c}
\hfill \\
\end{array} }\frac{1}{4\pi \varepsilon _0 }\frac{q_1 q_2 }{r_e
}=\frac{1}{n^2}\frac{1}{4\pi \varepsilon _0 }\frac{q_1 q_2
}{r_{e0} }.$
Among it, ``$m_e 'c^2$'' is the energy of space-time of the
electron,
``$\frac{1}{2}m_e v_e ^2$'' is the kinetic energy of the electron,
``$\frac{1}{4\pi \varepsilon _0 }\frac{q_1 q_2 }{r_e }$'' is
electric
potential energy.

To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2010.MAR.S1.197