APS March Meeting 2010
Volume 55, Number 2
Monday–Friday, March 15–19, 2010;
Portland, Oregon
Session L3: How to Predict Localized Hole-States in Oxides and Wide-Gap Semiconductors?
2:30 PM–5:30 PM,
Tuesday, March 16, 2010
Room: Oregon Ballroom 203
Sponsoring
Unit:
DCMP
Chair: Alex Zunger, National Renewable Energy Laboratory
Abstract ID: BAPS.2010.MAR.L3.5
Abstract: L3.00005 : Prediction of d$^0$ magnetism in self-interaction corrected density functional theory
4:54 PM–5:30 PM
Preview Abstract
Abstract
Author:
Chaitanya Das Pemmaraju
(Trinity College Dublin)
Over the past couple of years, the phenomenon of ``d$^0$
magnetism'' has greatly intrigued the magnetism community~[1].
Unlike conventional magnetic materials, ``d$^0$ magnets'' lack
any magnetic ions with open $d$ or $f$ shells but surprisingly,
exhibit signatures of ferromagnetism often with a Curie
temperature exceeding 300 K. Current research in the field is
geared towards trying to understand the mechanism underlying this
observed ferromagnetism which is difficult to explain within the
conventional m-J paradigm~[1].
The most widely studied class of d$^0$ materials are un-doped and
light element doped wide gap Oxides~such as HfO2, MgO, ZnO, TiO2
all of which have been put forward as possible d0 ferromagnets.
General experimental trends suggest that the magnetism is a
feature of highly defective samples leading to the expectation
that the phenomenon must be defect related. In particular, based
on density functional theory (DFT) calculations acceptor defects
formed from the O-2p states in these Oxides have been proposed as
being responsible for the ferromagnetism~[2,3].
However. predicting magnetism originating from 2p orbitals is a
delicate problem, which depends on the subtle interplay between
covalency and Hund's coupling. DFT calculations based on
semi-local functionals such as the local spin-density
approximation (LSDA) can lead to qualitative failures on several
fronts. On one hand the excessive delocalization of
spin-polarized holes leads to half-metallic ground states and the
expectation of room-temperature ferromagnetism. On the other
hand, in some cases a magnetic ground state may not be predicted
at all as the Hund's coupling might be under estimated.
Furthermore, polaronic distortions which are often a feature of
acceptor defects in Oxides are not predicted~[4,5].
In this presentation, we argue that the self interaction error
(SIE) inherent to semi-local functionals is responsible for the
failures of LSDA and demonstrate through various examples that
beyond-LSDA approaches that are either self-interaction free or
effectively correct for it overcome such failures to produce a
more accurate description of acceptor defects in Oxides.
Typically, correcting for the SIE, leads to an enhanced
localization of the holes responsible for the magnetism.
Additionally, the ground state becomes insulating driven by
polaronic distortions around the defect site and the magnetic
coupling between the impurities becomes weak~[4,5,6].\\[4pt]
[1]~J.M.D.~Coey, Solid State Sci., \textbf{7}, 660 (2005). \\[0pt]
[2]~I.S. Elfimov et al, PRL~\textbf{89}, 216403
(2002).\\[0pt]
[3]~C.~D.~Pemmaraju and S.~Sanvito, PRL~{\bf
94},217205 (2005)\\[0pt]
[4]~A.~Droghetti et al, PRB~{\bf 78}, 140404(R) (2008)\\[0pt]
[5]~J.A.~Chan et al, PRL~{\bf 103}, 016404, (2009).\\[0pt]
[6]~V. Pardo et al, PRB~\textbf{78}, 134427 (2008)
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2010.MAR.L3.5