APS March Meeting 2010
Volume 55, Number 2
Monday–Friday, March 15–19, 2010;
Portland, Oregon
Session A39: Focus Session: Iron Superconductors: New Materials
8:00 AM–10:48 AM,
Monday, March 15, 2010
Room: F150
Sponsoring
Units:
DMP DCMP
Chair: Athena Sefat, Oak Ridge National Laboratory
Abstract ID: BAPS.2010.MAR.A39.1
Abstract: A39.00001 : Crystal chemical aspects of superconductivity in BaFe$_{2}$As$_{2}$ and related compounds
8:00 AM–8:36 AM
Preview Abstract
Abstract
Author:
Dirk Johrendt
(LMU Muenchen)
BaFe$_{2}$As$_{2}$ is the parent compound of the 122-type iron
arsenides.$^{1}$ Superconductivity can be induced by
several kinds of doping$^{2-4}$ or by pressure.$^{5}$ It is
widely accepted that superconductivity in iron arsenides is
unconventional and a number of experiments agree with the s$\pm
$-scenario.$^{6}$ The latter relies on Fermi surface nesting
which depends on both the electron count and the lattice.
However, the coincidence of doping and pressure effects on the
structure of BaFe$_{2}$As$_{2}$ supports the role of the
structure.$^{7}$ Another open issue is the co-existence of
superconductivity and AF magnetic ordering. Our
$^{57}$Fe-M\"{o}ssbauer experiments with underdoped
Ba$_{0.8}$K$_{0.2}$Fe$_{2}$As$_{2}$ ($T_{c}$ = 24 K) revealed
full magnetic splitting, which indicates such a co-existence.$^{8}$
Compounds like Sr$_{2}$VO$_{3}$FeAs ($T_{c}$ = 37-45 K) are
promising candidates for higher $T_{c}$, but their crystal
chemistry is not yet understood. In non-superconducting
Sr$_{2}$CrO$_{3}$FeAs, we have detected a non-stoichiometry of
the Fe-site (Fe$_{0.93(1)}$Cr$_{0.07(1)})$ and $C$-type AF
ordering of the Cr$^{3+}$-layers.$^{9}$ The Cr-doping of the FeAs
layer is probably detrimental to superconductivity in
Sr$_{2}$CrO$_{3}$FeAs, but a similar non-stoichiometry may play a
vital role in Sr$_{2}$VO$_{3}$FeAs.\\
-\\
$^{1 }$M. Rotter, M. Tegel, I. Schellenberg, et al., Phys. Rev. B
\textbf{78}, 020503 (2008).\\
$^{2 }$M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett.
\textbf{101}, 107006 (2008).\\
$^{3 }$S. Jiang, C. Wang, Z. Ren, et al., J. Phys.: Condens.
Matter \textbf{21}, 382203 (2009).\\
$^{4 }$A. S. Sefat, R. Jin, M. A. McGuire, et al., Phys. Rev.
Lett. \textbf{101}, 117004 (2008).\\
$^{5 }$P. L. Alireza, Y. T. C. Ko, J. Gillett, et al., J. Phys.:
Condens. Matter \textbf{21}, 012208 (2009).\\
$^{6 }$I. Mazin, D. J. Singh, M. D. Johannes, et al., Phys. Rev.
Lett. \textbf{101}, 057003 (2008).\\
$^{7 }$M. Rotter, M. Pangerl, M. Tegel, et al., Angew. Chem. Int.
Ed. \textbf{47}, 7949 (2008).\\
$^{8 }$M. Rotter, M. Tegel, I. Schellenberg, et al., New J. Phys.
\textbf{11}, 025014 (2009).\\
$^{9 }$M. Tegel, Y. Su, F. Hummel, et al., arXiv0911.0450.
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2010.MAR.A39.1