Bulletin of the American Physical Society
APS April Meeting 2016
Volume 61, Number 6
Saturday–Tuesday, April 16–19, 2016; Salt Lake City, Utah
Session C18: Undergraduate Research/SPS IIUndergraduate Students
|
Hide Abstracts |
Sponsoring Units: APS Chair: Cortney Bougher, American Physical Society Room: 251F |
Saturday, April 16, 2016 1:30PM - 1:42PM |
C18.00001: A Compact Cosmic Ray Telescope using Silicon Photomultipliers for use in High Schools Luis Castro, Leonardo Elizondo, Mark Shelor, Omar Cervantes, Sewan Fan, Stefan Ritt Over the years, the QuarkNet and the LBL Cosmic Ray Project have helped trained thousands of high school students and teachers to explore cosmic ray physics. To get high school students in the Salinas, CA area also excited about cosmic rays, we constructed a cosmic ray telescope as a physics outreach apparatus. Our apparatus includes a pair of plastic scintillators coupled to silicon photomultipliers (SiPM) and a coincidence circuit board. We designed and constructed custom circuit boards for mounting the SiPM detectors, the high voltage power supplies and coincidence AND circuit. The AND logic signals can be used for triggering data acquisition devices including an oscilloscope, a waveform digitizer or an Arduino microcontroller. To properly route the circuit wire traces, the circuit boards were layout in Eagle and fabricated in-house using a circuit board maker from LPKF LASER, model Protomat E33. We used a Raspberry Pi computer to control a fast waveform sampler, the DRS4 to digitize the SiPM signal waveforms. The CERN PAW software package was used to analyze the amplitude and time distributions of SiPM detector signals. At this conference, we present our SiPM experimental setup, circuit board fabrication procedures and the data analysis work flow. [Preview Abstract] |
Saturday, April 16, 2016 1:42PM - 1:54PM |
C18.00002: Using Stars to Align a Steered Laser System for Cosmic Ray Simulation Harry Krantz, Lawrence Wiencke Ultra high energy cosmic rays (UHECRs) are the highest energy cosmic particles with kinetic energy above $10^{18} eV$. UHECRs are detected from the air shower of secondary particles and UV florescence that results from interaction with the atmosphere. A high power UV laser beam can be used to simulate the optical signature of a UHCER air shower. The Global Light System (GLS) is a planned network of ground-based light sources including lasers to support the planned space-based Extreme Universe Space Observatory (EUSO). A portable prototype GLS laser station has been constructed at the Colorado School of Mines. Currently the laser system uses reference targets on the ground but stars can be used to better align the beam by providing a complete hemisphere of targets. In this work, a CCD camera is used to capture images of known stars through the steering head optics. The images are analyzed to find the steering head coordinates of the target star. The true coordinates of the star are calculated from the location and time of observation. A universal adjustment for the steering head is determined from the differences between the two pairs of coordinates across multiple stars. This laser system prototype will also be used for preflight tests of the ESUO Super Pressure Balloon mission. [Preview Abstract] |
Saturday, April 16, 2016 1:54PM - 2:06PM |
C18.00003: Gravitational Interactions of White Dwarf Double Stars James Mckeough, Chloe Robinson, Bridget Ortiz, Ajit Hira In the light of the possible role of White Dwarf stars as progenitors of Type Ia supernovas, we present computational simulations of some astrophysical phenomena associated with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.5 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We will extend our computational studies to blue giant and red giant stars in the future. [Preview Abstract] |
Saturday, April 16, 2016 2:06PM - 2:18PM |
C18.00004: Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices Matthew Longo, Mitchell Matheny, Jasmine Knudsen We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model. [Preview Abstract] |
Saturday, April 16, 2016 2:18PM - 2:30PM |
C18.00005: Using Frequency Noise Feedback to Improve Stability in Extended Cavity Diode Lasers McKinley Pugh, Dallin Durfee We are developing a feedback system to stabilize extended cavity diode lasers using frequency noise. In other literature, amplitude noise has been used to predict and prevent mode hops. We’ve found, however, that amplitude noise only correlates to an impending mode hop when the laser is locked to a frequency reference. We have found evidence that the amplitude noise is generated from more fundamental frequency noise by the lock feedback. We therefore propose a way to use frequency noise directly to generate a signal to predict and prevent mode hops. [Preview Abstract] |
Saturday, April 16, 2016 2:30PM - 2:42PM |
C18.00006: Infrared Optical Readout of a Gas-Based Recoil Tracking Detector Katrina Miller, Phillip Barbeau, Grayson Rich, Connor Awe Gas-based recoil tracking detectors are used in a variety of nuclear and particle physics experiments to identify particles based on distinct interaction signatures. Past research shows that this technology, if further developed, may prove useful in the ongoing search for dark matter and coherent neutrino scattering observations. This research presents the original design and development of a tracking detector that uses gaseous argon as a scintillating material to measure infrared optical readout. The initial model of this detector, consisting of a wire chamber filled with P-10, has produced unambiguous ionization signals. Current studies are focused toward using pure gaseous argon to detect coincident scintillation signals, which will demonstrate the capability of the detector to image particle tracks using nonvisible radiation. [Preview Abstract] |
Saturday, April 16, 2016 2:42PM - 2:54PM |
C18.00007: Alternative Gravity Rotation Curves for the LITTLE THINGS Survey Modestas Stulge, Brian Stefanski, Jeremy Dentico, James O'Brien, Joseph Gay, Robert Moss, Bryan Young, Adam Smith Galactic rotation curves have proven to be the testing ground for dark matter bounds in spiral galaxies of all morphologies. Dwarf Galaxies serve as an increasingly interesting testing ground of rotation curve dynamics due to their increased stellar formation and typically rising rotation curve. These galaxies usually are not dominated by typical stellar structure and mostly terminate at small radial distances. This, coupled with the fact that Cold Dark Matter theories such as NFW ({$\Lambda CDM$}) struggle with the universality of galactic rotation curves, allow for exclusive features of alternative gravitational models to be analyzed. Recently, the THINGS (The HI Nearby Galactic Survey) has been extended to include a sample of 25 dwarf galaxies now known as the LITTLE THINGS Survey. Here, we present a thorough application of alternative gravitational models to the LITTLE THINGS survey, specifically focusing on MOND and Conformal Gravity. An analysis and discussion of the results of the fitting procedure of the two alternative gravitational models are explored. We posit here that both the Conformal Gravity and MOND can provide an accurate description of the galactic dynamics without the need for copious dark matter. [Preview Abstract] |
Saturday, April 16, 2016 2:54PM - 3:06PM |
C18.00008: Novel Tests of Gravity at the Sub-millimeter Scale Jeremy Johnson, Ian Guerrero, Gabriela Martinez, C.D. Hoyle Theories which attempt to unify the Standard Model and General Relativity often include features which violate the Weak Equivalence Principle (WEP) and gravitational Inverse-Square Law (ISL). A violation of either the WEP or ISL at any length scale would bring into question our fundamental understanding of gravity. Motivated by these considerations, undergraduates and faculty at Humboldt State University are building an experiment to probe gravitational interactions below the 50-micron length scale. The experiment employs a torsion pendulum with equal masses of different material arranged as a ``composition dipole.'' We measure the twist of the torsion pendulum as an attractor mass is oscillated nearby in a parallel-plate configuration, providing a time varying torque on the pendulum. The size and distance dependence of the torque variation will provide a means to determine any deviation from the WEP or ISL at untested scales. This talk will focus on the analysis of preliminary data and experimental sensitivity. [Preview Abstract] |
Saturday, April 16, 2016 3:06PM - 3:18PM |
C18.00009: A Computer Program to Measure the Energy Spread of Multi-turn Beam in the Fermilab Booster at Injection Jovan Nelson, Chandrashekhara Bhat, Brian Hendricks We have developed a computer program interfaced with the ACNET environment for Fermilab accelerators in order to measure the energy spread of the injected proton beam from the LINAC, at the energy of 400 MeV. This program allows the user to configure a digitizing oscilloscope and timing devices to optimize data acquisition from a resistive wall current monitor. When the program is launched, it secures control of the oscilloscope and then generates a ``one-shot'' timeline which initiates injection into the Booster. Once this is complete, a kicker is set to create a notch in the beam and the line charge distribution data is collected by the oscilloscope. The program then analyzes this data in order to obtain notch width, beam revolution period, and beam energy spread. This allows the program to be a possible useful diagnostic tool for the beginning of the acceleration cycle for the proton beam. [Preview Abstract] |
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2025 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
100 Motor Pkwy, Suite 110, Hauppauge, NY 11788
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700