2008 APS March Meeting
Volume 53, Number 2
Monday–Friday, March 10–14, 2008;
New Orleans, Louisiana
Session G1: 25 Years of Scanning Probe Microscopy
8:00 PM–9:30 PM,
Monday, March 10, 2008
New Orleans Marriott
Room: Carondelet (3rd floor)
Sponsoring
Unit:
APS
Chair: Julia Phillips, Sandia National Laboratories
Abstract ID: BAPS.2008.MAR.G1.2
Abstract: G1.00002 : Scanning Probe Microscopy for Spin Mapping and Spin Manipulation on the Atomic Scale
8:30 PM–9:00 PM
Preview Abstract
Abstract
Author:
Roland Wiesendanger
(University of Hamburg, Institute of Applied Physics)
A fundamental understanding of magnetic and spin-dependent phenomena
requires the determination of spin structures and spin
excitations down to
the atomic scale. The direct visualization of atomic-scale spin
structures
[1-4] has first been accomplished for magnetic metals by
combining the
atomic resolution capability of Scanning Tunnelling Microscopy
(STM) with
spin sensitivity, based on vacuum tunnelling of spin-polarized
electrons
[5]. The resulting technique, Spin-Polarized Scanning Tunnelling
Microscopy
(SP-STM), nowadays provides unprecedented insight into collinear and
non-collinear spin structures at surfaces of magnetic
nanostructures and has
already led to the discovery of new types of magnetic order at
the nanoscale
[6,7]. More recently, the detection of spin-dependent exchange and
correlation forces has allowed a first direct real-space
observation of spin
structures at surfaces of antiferromagnetic insulators [8]. This
new type of
scanning probe microscopy, called Magnetic Exchange Force Microscopy
(MExFM), offers a powerful new tool to investigate different
types of
spin-spin interactions based on direct-, super-, or RKKY-type
exchange down
to the atomic level. By combining MExFM with high-precision
measurements of
damping forces, localized or confined spin excitations in
magnetic systems
of reduced dimensions now become experimentally accessible.
Moreover, the
combination of spin state read-out and spin state manipulation,
based on
spin-current induced switching across a vacuum gap by means of
SP-STM [9],
provides a fascinating novel type of approach towards ultra-high
density
magnetic recording without the use of magnetic stray fields.
\newline
[1] R. Wiesendanger, I. V. Shvets, D. B\"{u}rgler, G. Tarrach, H.-J.
G\"{u}ntherodt, J. M. D. Coey, and S. Gr\"{a}ser, Science
\textbf{255}, 583
(1992)
[2] S. Heinze, M. Bode, O. Pietzsch, A. Kubetzka, X. Nie, S.
Bl\"{u}gel, and
R.~Wiesendanger, Science \textbf{288}, 1805 (2000)
[3] A. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer,
K. von
Bergmann, O. Pietzsch, S. Bl\"{u}gel, and R. Wiesendanger, Phys.
Rev. Lett.
\textbf{94}, 087204 (2005)
[4] M. Bode, E. Y. Vedmedenko, K. von Bergmann, A. Kubetzka, P.
Ferriani, S.
Heinze, and R. Wiesendanger, Nature Materials \textbf{5}, 477 (2006)
[5] R. Wiesendanger, H.-J. G\"{u}ntherodt, G. G\"{u}ntherodt, R.
J. Gambino,
and R. Ruf, Phys. Rev. Lett. \textbf{65}, 247 (1990)
[6] K. von Bergmann, S. Heinze, M. Bode, E. Y. Vedmedenko, G.
Bihlmayer, S.
Bl\"{u}gel, and R. Wiesendanger, Phys. Rev. Lett. \textbf{96},
167203 (2006)
[7] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G.
Bihlmayer, A. Kubetzka, O. Pietzsch, S. Bl\"{u}gel, and R.
Wiesendanger,
Nature \textbf{447}, 190 (2007)
[8] U. Kaiser, A. Schwarz, and R. Wiesendanger, Nature
\textbf{446}, 522
(2007)
[9] S. Krause, L. Berbil-Bautista, G. Herzog, M. Bode, and R.
Wiesendanger,
Science \textbf{317}, 1537 (2007)
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2008.MAR.G1.2