Bulletin of the American Physical Society
APS March Meeting 2023
Las Vegas, Nevada (March 5-10)
Virtual (March 20-22); Time Zone: Pacific Time
Session Q17: Chemical Physics of Plasmonic Nanostructures: Catalysis and Synthesis
3:00 PM–5:48 PM,
Wednesday, March 8, 2023
Room: Room 209
Sponsoring
Unit:
DCP
Chair: Matthew Sheldon, Texas A&M University
Abstract: Q17.00005 : The Light Stuff: Enabling Sustainable Chemical Manufacturing with Atomically-Optimized Photocatalysts
4:12 PM–4:48 PM
Presenter:
Jennifer Dionne
(Stanford University)
Author:
Jennifer Dionne
(Stanford University)
Chemical manufacturing is critical for industries spanning construction, plastics, pharmaceuticals, food, and fertilizers, yet remains among the most energy-demanding practices. Optical excitation of plasmons offers a route to more sustainable chemical synthesis. Plasmons create nanoscopic regions of high electromagnetic field intensity that can modify electronic and molecular energy levels, enable access to excited-state dynamics, and open new reaction pathways that are impossible to achieve under typical conditions. Further, plasmons can be efficiently excited with sunlight or solar-driven LEDs, for sustainable chemical transformations.
Here, we present our research advancing plasmon photocatalysis from the atomic to the reactor scale. First, we describe advances in in-situ atomic-scale catalyst characterization, using environmental optically-coupled transmission electron microscopy. With both light and reactive gases introduced into the column of an electron microscope, we can monitor chemical transformations under various illumination conditions, gaseous environments, and at controlled temperatures, correlating three-dimensional atomic-scale catalyst structure with photo-chemical reactivity. Then, we describe how these atomic-scale insights enable optimized reactor-scale performance. As model systems, we consider three reactions: 1) acetylene hydrogenation with Ag-Pd catalysts; 2) CO2 reduction with Au-Pd catalysts; and nitrogen fixation with AuRu catalysts. Here, Au/Ag acts as a strong plasmonic light absorber while Pd/Ru serves as the catalyst. We find that plasmons modify the rate of distinct reaction steps differently and that reaction nucleation occurs at electromagnetic hot-spots – even when those hot-spots do not occur in the preferred nucleation site. Plasmons also open new reaction pathways that are not observed without illumination, enabling both high-efficiency and selective catalysis with tuned bimetallic catalyst composition. Our results provide a roadmap for how atomically-architected photocatalysts can precisely control molecular interactions for high-efficiency and product-selective chemistry.
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2023 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
1 Research Road, Ridge, NY 11961-2701
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700