APS March Meeting 2016
Volume 61, Number 2
Monday–Friday, March 14–18, 2016;
Baltimore, Maryland
Session L54: Supersolids and Band Structure in Strongly Correlated Systems
11:15 AM–2:15 PM,
Wednesday, March 16, 2016
Hilton Baltimore
Room: Holiday Ballroom 5
Sponsoring
Unit:
DCMP
Chair: William Cannon, Texas A&M University
Abstract ID: BAPS.2016.MAR.L54.13
Abstract: L54.00013 : The electronic structure of the Mott insulator VO$_{\mathrm{2}}$: the strongly correlated metal state is screened by impurity band.
1:39 PM–1:51 PM
Preview Abstract
Abstract
Author:
Hyun-Tak Kim
(MIT Center in ETRI)
A Mott insulator VO$_{\mathrm{2}}$ (3$\mathrm{d}^{1})$ has a direct gap
($\Delta_{direct}\propto V_{direct})$ of 0.6 eV and an indirect gap of
$\Delta_{act}\propto V_{direct}\approx $0.15 \textit{eV} coming from impurity indirect
band. At $\mathrm{T}_{c}$, $\Delta_{direct}=\Delta_{act}=$ O is satisfied
and the insulator-to-metal transition (IMT) occurs. The metallic carriers
near core region can be trapped when a critical onsite Coulomb $U_{c}$
exists. Then, a potential energy is defined as
\[
V_{g}=\left( V_{direct}+U_{c} \right)+V_{indirect}
\]
\begin{equation}
\label{eq1}
\thinspace \thinspace \thinspace \thinspace \thinspace =-(2 \mathord{\left/
{\vphantom {2 {3)E_{F}(1+e(N_{tot} \mathord{\left/ {\vphantom {N_{tot}
{n_{tot})(1-\mathrm{exp}({-\Delta }_{act} \mathord{\left/ {\vphantom
{{-\Delta }_{act} {k_{B}T)))+U_{c}}}} \right. \kern-\nulldelimiterspace}
{k_{B}T)))+U_{c}}}}} \right. \kern-\nulldelimiterspace}
{n_{tot})(1-\mathrm{exp}({-\Delta }_{act} \mathord{\left/ {\vphantom
{{-\Delta }_{act} {k_{B}T)))+U_{c}}}} \right. \kern-\nulldelimiterspace}
{k_{B}T)))+U_{c}}}}}} \right. \kern-\nulldelimiterspace}
{3)E_{F}(1+e(N_{tot} \mathord{\left/ {\vphantom {N_{tot}
{n_{tot})(1-\mathrm{exp}({-\Delta }_{act} \mathord{\left/ {\vphantom
{{-\Delta }_{act} {k_{B}T)))+U_{c}}}} \right. \kern-\nulldelimiterspace}
{k_{B}T)))+U_{c}}}}} \right. \kern-\nulldelimiterspace}
{n_{tot})(1-\mathrm{exp}({-\Delta }_{act} \mathord{\left/ {\vphantom
{{-\Delta }_{act} {k_{B}T)))+U_{c}}}} \right. \kern-\nulldelimiterspace}
{k_{B}T)))+U_{c}}}},
\end{equation}
where $V_{direct}=-(2 \mathord{\left/ {\vphantom {2 3}} \right.
\kern-\nulldelimiterspace} 3)E_{F}$ is the screened Coulomb pseudopotential
at K $=$ 0. $\mathrm{\Delta \rho =}N_{tot} \mathord{\left/ {\vphantom
{N_{tot} {n_{tot}\approx 0.018\% }}} \right. \kern-\nulldelimiterspace}
{n_{tot}\approx 0.018\% }$ [\underline {1}] is defined as the critical
doping quantity, where $n_{tot}$ is the carrier density in the direct band
and $N_{tot}$ is the carrier density in the impurity band. In $U_{c}<(2
\mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace}
3)E_{F}$ case, it sustains the insulator state. However, when both $U_{c}>(2
\mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace}
3)E_{F}$ and $\Delta_{act}\mathrm{=}$ 0 by excitation are satisfied, the
IMT occurs in V$_{\mathrm{g}}\ge $ 0. This indicates that the excitation
($\Delta_{act}=$ 0) breaks the Coulomb equilibrium
(V$_{\mathrm{g}}$\textless 0 and insulator sustaining $U_{c})$ in \textit{Eq.}
($\mathrm{1})$; the Coulomb energy changes from $U_{c}$ to a $U{
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2016.MAR.L54.13