Bulletin of the American Physical Society
APS March Meeting 2014
Volume 59, Number 1
Monday–Friday, March 3–7, 2014; Denver, Colorado
Session J14: Invited Session: Collective Motion Across Scales: From Proteins to Animals |
Hide Abstracts |
Sponsoring Units: DBIO Chair: Ajay Gopinathan, University of Califonria, Merced Room: 301-303 |
Tuesday, March 4, 2014 2:30PM - 3:06PM |
J14.00001: Motile Fluids: Granular, Colloidal and Living Invited Speaker: Sriram Ramaswamy My talk will present our recent results from theory, simulation and experiment on flocking, swarming and instabilities in diverse realizations of active systems. The findings I will report include: flocking at a distance in vibrated granular monolayers; the active hydrodynamics of self-propelled solids; clusters, asters and oscillations in colloidal chemotaxis. [Preview Abstract] |
Tuesday, March 4, 2014 3:06PM - 3:42PM |
J14.00002: How Many Insects Does It Take to Make a Swarm? Invited Speaker: Nicholas Ouellette Aggregations of social animals, such as flocks of birds, schools of fish, or swarms of insects, are beautiful, natural examples of self-organized behavior far from equilibrium. They tend to display a range of emergent properties, from enhanced sensing to the rapid propagation of information throughout the aggregate. Many classes of models have been proposed to describe these systems, including agent-based models that specify explicit social forces between individuals and continuum models that abstract the interactions between individuals into some smooth advecting velocity field. Assessing these various modeling approaches requires comparison with empirical data. We will discuss measurements of laboratory mating swarms of the non-biting midge Chironomus riparius in the context of model assessment. In particular, we focus on the question of the small-number limit: how large must the population be before collective properties emerge? [Preview Abstract] |
Tuesday, March 4, 2014 3:42PM - 4:18PM |
J14.00003: Dynamics and Emergent Structures in Active Fluids Invited Speaker: Aparna Baskaran In this talk, we consider an active fluid of colloidal sized particles, with the primary manifestation of activity being a self-replenishing velocity along one body axis of the particle. This is a minimal model for varied systems such as bacterial colonies, cytoskeletal filament motility assays vibrated granular particles and self propelled diffusophoretic colloids, depending on the nature of interaction among the particles. Using microscopic Brownian dynamics simulations, coarse-graining using the tools of non-equilibrium statistical mechanics and analysis of macroscopic hydrodynamic theories, we characterize emergent structures seen in these systems, which are determined by the symmetry of the interactions among the active units, such as propagating density waves, dense stationary bands, asters and phase separated isotropic clusters. We identify a universal mechanism, termed ``self-regulation,'' as the underlying physics that leads to these structures in diverse systems. [Preview Abstract] |
Tuesday, March 4, 2014 4:18PM - 4:54PM |
J14.00004: Topological and behavioral disorder in collective motion Invited Speaker: David Quint A major underlying assumption in many studies on the collective motion of self-propelled agents has been that the environment is continuous, isotropic and ordered and agents are all identical. In the natural world there are many examples of disordered environments or heterogeneous swarms where collective motion can exist. Examples include bats that navigate natural caverns via echolocation, schools of fish that maneuver through dark and light areas, microbial colonies that move about in heterogeneous soil, quorum sensing bacteria, crowds of people that are evacuating a building and traffic flow in major cities. In general disorder can arise from two basic sources that inhibit/augment both movement and information flow, those that represent physical obstacles (i.e topological), (\textit{extrinsic}), and those that arise from behavioral heterogeneties within the swarm itself (\textit{intrinsic}). In either case, extrinsic or intrinsic, disorder can be quenched or dynamic in space or time or both. To understand the effect of the various forms of disorder that can be present in the environment of the agents, we study both discrete and continuous $2d$ agent based models that utilize only local interactions and study the transition to the collectively moving state as a function of the amount of disorder or behavioral heterogeneities present in the environment. I will present our recent results and discuss the effect that disorder has on collective motion and the general physical mechanisms that swarms, either real or artificial, could utilize in order to overcome disorder in their environment. [Preview Abstract] |
Tuesday, March 4, 2014 4:54PM - 5:30PM |
J14.00005: Biomimetic Phases of Microtubule-Motor Mixtures Invited Speaker: Jennifer Ross We try to determine the universal principles of organization from the molecular scale that gives rise to architecture on the cellular scale. We are specifically interested in the organization of the microtubule cytoskeleton, a rigid, yet versatile network in most cell types. Microtubules in the cell are organized by motor proteins and crosslinkers. This work applies the ideas of statistical mechanics and condensed matter physics to the non-equilibrium pattern formation behind intracellular organization using the microtubule cytoskeleton as the building blocks. We examine these processes in a bottom-up manner by adding increasingly complex protein actors into the system. Our systematic experiments expose nature's laws for organization and has large impacts on biology as well as illuminating new frontiers of non-equilibrium physics. [Preview Abstract] |
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2023 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
1 Research Road, Ridge, NY 11961-2701
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700