APS March Meeting 2013
Volume 58, Number 1
Monday–Friday, March 18–22, 2013;
Baltimore, Maryland
Session F3: Invited Session: Quantum Computing in AMO
8:00 AM–11:00 AM,
Tuesday, March 19, 2013
Room: Ballroom III
Sponsoring
Units:
GQI DAMOP
Chair: Ivan Deutsch, University of New Mexico
Abstract ID: BAPS.2013.MAR.F3.4
Abstract: F3.00004 : Photonic quantum technologies
9:48 AM–10:24 AM
Preview Abstract
Abstract
Author:
Jeremy O'Brien
(University of Bristol)
Of the approaches to quantum computing [1], photons are appealing for their
low-noise properties and ease of manipulation [2], and relevance to other
quantum technologies [3], including communication, metrology [4] and
measurement [5]. We report an integrated waveguide approach to photonic
quantum circuits for high performance, miniaturization and scalability
[6--10]. We address the challenges of scaling up quantum circuits using new
insights into how controlled operations can be efficiently realised [11],
demonstrating Shor's algorithm with consecutive CNOT gates [12] and the
iterative phase estimation algorithm [13]. We have shown how quantum
circuits can be reconfigured, using thermo-optic phase shifters to realise a
highly reconfigurable quantum circuit [14], and electro-optic phase shifters
in lithium niobate to rapidly manipulate the path and polarisation of
telecomm wavelength single photons [15]. We have addressed miniaturisation
using multimode interference architectures to directly implement NxN
Hadamard operations [16], and by using high refractive index contrast
materials such as SiO$_{\mathrm{x}}$N$_{\mathrm{y}}$, in which we have
implemented quantum walks of correlated photons [17], and Si, in which we
have demonstrated generation of orbital angular momentum states of light
[18]. We have incorporated microfluidic channels for the delivery of samples
to measure the concentration of a blood protein with entangled states of
light [19]. We have begun to address the integration of superconducting
single photon detectors [20] and diamond [21,22] and non-linear [23,24]
single photon sources. Finally, we give an overview of recent work on
fundamental aspects of quantum measurement, including a quantum version of
Wheeler's delayed choice experiment [25].\\[4pt]
[1] TD Ladd, \textit{et al} \textbf{\textit{Nature }}\textbf{464}, 45 (2010)
[2] JL O'Brien, \textbf{\textit{Science}}\textbf{ 318}, 1567 (2007)
[3] JL O'Brien, A Furusawa, J Vuckovic \textbf{\textit{Nature
Photon.}}\textbf{ 3}, 687 (2009
[4] T Nagata, \textit{et al} \textbf{\textit{Science}}\textbf{ 316}, 726 (2007)
[5] R Okamoto, \textit{et al} \textbf{\textit{Science}}\textbf{ 323}, 483 (2009)
[6] A Politi, \textit{et al} \textbf{\textit{Science }}\textbf{320}, 646 (2008).
[7] A Laing, \textit{et al} \textbf{\textit{Appl. Phys. Lett.}}\textbf{ 97}, 211109 (2010)
[8] JCF Matthews, \textit{et al} \textbf{\textit{Nature Photon.}}\textbf{ 3}, 346 (2009)
[9] A Politi, \textit{et al} \textbf{\textit{Science}}\textbf{ 325}, 1221 (2009)
[10] JCF Matthews, \textit{et al} \textbf{\textit{Phys. Rev. Lett.}} \quad \textbf{107}, 163602
(2011)
[11] X-Q Zhou, \textit{et al} \textbf{\textit{Nature Comm. }}\textbf{2} 413 2011
[12] E Mart\'{\i}n-L\'{o}pez, \textit{et al} \textbf{\textit{Nature Photon. }}\textbf{6},
773 (2012)
[13] X-Q Zhou, \textit{et al} arXiv:1110.4276
[14] PJ Shadbolt, \textit{et al }\textbf{\textit{Nature Photon.}} \textbf{6}, 45 (2012).
[15] D. Bonneau, \textit{et al.} \textbf{\textit{Phys. Rev. Lett.}}, 108, 053601 (2012)
[16] A Peruzzo, \textit{et al} \textbf{\textit{Nature Comm.}}\textbf{ 2,} 224 (2011)
[17] A Peruzzo, \textit{et al} \textbf{\textit{Science }}\textbf{329}, 1500 (2010)
[18] X Cai, \textit{et al }\textbf{\textit{Science}} \quad \textbf{338}, 363 (2012)
[19] A Crespi, \textit{et al} \textbf{\textit{Appl. Phys. Lett. }}\textbf{100}, 233704
(2012)
[20] CM Natarajan, \textit{et al} \textbf{\textit{Appl. Phys. Lett.}}\textbf{ 96}, 211101
(2010)
[21] JP Hadden, \textit{et al }\textbf{\textit{Appl. Phys. Lett.}}\textbf{ 97}, 241901
(2010)
[22] L Marseglia, \textit{et al} \textbf{\textit{Appl. Phys. Lett. }}\textbf{98}, 133107
(2011)
[23] C. Xiong, \textit{et al.} \textbf{\textit{Appl. Phys. Lett.}}\textbf{ 98}, 051101
(2011)
[24] M. Lobino, \textit{et al}, \textbf{\textit{Appl. Phys. Lett. }}\textbf{99}, 081110
(2011)
[25] E. Engin, \textit{ et al.} arXiv:1204.4922
[25] A. Peruzzo, \textit{et al} \textbf{\textit{Science}} \textbf{338}, 634 (2012)
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2013.MAR.F3.4