Bulletin of the American Physical Society
APS March Meeting 2012
Volume 57, Number 1
Monday–Friday, February 27–March 2 2012; Boston, Massachusetts
Session A46: Invited Session: Inherently Strained Polymers and Soft Materials |
Hide Abstracts |
Sponsoring Units: DPOLY Chair: Sergei Sheiko, University of North Carolina Room: 160AB |
Monday, February 27, 2012 8:00AM - 8:36AM |
A46.00001: Switching Shape of Nematic Elastomers Invited Speaker: Kenji Urayama Nematic elastomers (NEs) are a novel class of materials. NEs possess both the elastic properties of rubbers and the orientational properties of liquid crystals. The combination of these two properties makes the shape of NEs very sensitive to external stimuli. We focus on the thermally induced deformation of the NE films inherently possessing the two types of inhomogeneous director alignments, i.e., hybrid and twist alignments. In the NEs with hybrid alignments (HNEs), the director continuously changes by 90 degree from planar alignment to vertical alignment between the top and bottom surfaces. In the twist NEs, the director parallel to the surfaces smoothly rotates by 90 degree around the thickness axis, and the director at the mid-plane is parallel to the long or short axis of the film. In the HNEs and TNEs, the director change along the normal of the films causes the planes at different depth to respond differently to temperature variation, and the films are thus expected to change shape. We experimentally demonstrate that (i) depending on the width/thickness ratio, the TNE ribbons form the spiral ribbons or helicoids whose spiral or helical pitch markedly depends on temperature [1], and (ii) the HNE ribbons exhibit giant bending in response to temperature variation [2]. We theoretically interpret these experimental observations on the basis of the elastic models with the data of thermally induced uniaxial deformation of the corresponding NEs with globally planar alignment.\\[4pt] [1] Sawa, Ye, Urayama, Takigawa, Gimenez-Pinto, Selinger, R., Selinger, J., Proc. Natl. Acad. Sci., USA, 108, 6364 (2011).\\[0pt] [2] Sawa, Urayama, Takigawa, DeSimone, Teresi, Macromolecules, 43, 4362 (2010). [Preview Abstract] |
Monday, February 27, 2012 8:36AM - 9:12AM |
A46.00002: Surface shape memory in polymers Invited Speaker: Patrick Mather Many crosslinked polymers exhibit a shape memory effect wherein a permanent shape can be prescribed during crosslinking and arbitrary temporary shapes may be set through network chain immobilization. Researchers have extensively investigated such shape memory polymers in bulk form (bars, films, foams), revealing a multitude of approaches. Applications abound for such materials and a significant fraction of the studies in this area concern application-specific characterization. Recently, we have turned our attention to surface shape memory in polymers as a means to miniaturization of the effect, largely motivated to study the interaction of biological cells with shape memory polymers. In this presentation, attention will be given to several approaches we have taken to prepare and study surface shape memory phenomenon. First, a reversible embossing study involving a glassy, crosslinked shape memory material will be presented. Here, the permanent shape was flat while the temporary state consisted of embossed parallel groves. Further the fixing mechanism was vitrification, with Tg adjusted to accommodate experiments with cells. We observed that the orientation and spreading of adherent cells could be triggered to change by the topographical switch from grooved to flat. Second, a functionally graded shape memory polymer will be presented, the grading being a variation in glass transition temperature in one direction along the length of films. Characterization of the shape fixing and recovery of such films utilized an indentation technique that, along with polarizing microscopy, allowed visualization of stress distribution in proximity to the indentations. Finally, very recent research concerning shape memory induced wrinkle formation on polymer surfaces will be presented. A transformation from smooth to wrinkled surfaces at physiological temperatures has been observed to have a dramatic effect on the behavior of adherent cells. A look to the future in research and applications for surface shape memory in polymers will round out the talk. [Preview Abstract] |
Monday, February 27, 2012 9:12AM - 9:48AM |
A46.00003: Cell Forces and Cytoskeletal Order Parameters Invited Speaker: Dennis Discher Nematic, Smectic and Isotropic Order parameters have found wide-spread use in characterizing all manner of soft matter systems, but have not yet been applied to characterize and understand the structures within living cells, particularly cytoskeletal structures. Several examples will be used to illustrate the utility of such analyses, ranging from experiments on stem cells attached to or in various elastic matrices to embryonic heart tissue and simulations of membrane cytoskeletons under all manner of stressing. Recently developed theory will be shown to apply in general with account of cell contractility, matrix elasticity and dimensionality as well as cell shape and a newly defined ``cytoskeletal polarizability.'' The latter property of cells is likely different between different cell types due to different amounts of key cytoskeletal components with some types of stem cells being more polarizable than others. Evidence of coupling to the nucleus as a viscoelastic inclusion will also be presented. \\[4pt] References: (1) P. Dalhaimer, D.E. Discher, T. Lubensky. Crosslinked actin networks exhibit liquid crystal elastomer behavior, including soft-mode elasticity. Nature Physics 3: 354-360 (2007). (2) A. Zemel, F.Rehfeldt, A.E.X. Brown, D.E. Discher, and S.A. Safran. Optimal matrix rigidity in the self-polarization of stem cells. Nature Physics 6: 468 - 473 (2010). [Preview Abstract] |
Monday, February 27, 2012 9:48AM - 10:24AM |
A46.00004: Tension in Highly Branched Polymers Invited Speaker: Michael Rubinstein We propose a systematic method of designing branched macromolecules capable of building up high tension in their covalent bonds, which can be controlled by changing solvent quality. This tension is achieved exclusively due to intramolecular interactions by focusing lower tensions from its numerous branches to a particular section of the designed molecule. The simplest molecular architecture, which allows this tension amplification, is a so-called pom-pom macromolecule consisting of a relatively short linear spacer and two $z$-arm stars at its ends. Tension developed in the stars due to crowding of their branches is amplified by a factor of $z$ and focused to the spacer. There are other highly branched macromolecules, such as molecular brushes - comb polymers with high density of side branches, that have similar focusing and amplification properties. In addition molecular brushes transmit tension along their backbone. Adsorption or grafting of these branched molecules on a substrate results in further increase in tension as compared to molecules in solution. Molecular architectures similar to pom-pom and molecular brushes with a high tension amplification parts can be used in numerous sensor applications. Unique conformations of molecular brushes in a pre-wetting layer allow direct visualization by atomic force microscope. Detailed images of individual molecules spreading along the surface enable critical evaluation of theories of chain dynamics in polymer monolayer. Strong spreading of densely branched macromolecules on a planar substrate can lead to high tension in the molecular backbone sufficient to break covalent bonds. [Preview Abstract] |
Monday, February 27, 2012 10:24AM - 11:00AM |
A46.00005: New strategies in adaptive polymer gels Invited Speaker: Eugenia Kumacheva Plants possess a remarkable ability to change their shape in response to the changes in ambient conditions. These transitions are believed to be governed by the non-uniform accumulation of elastic energy and the release of localized stresses. The self-shaping behaviour of plants offers a new paradigm for creating adaptable materials by-design, however currently prediction of three-dimensional transformations in soft matter remain a challenge. Here we report on the nature-inspired strategy for the generation of complex three-dimensional structures by programming stimuli-responsive deformations of a composite planar polymer gel sheet. This work constitutes a major step towards the preprogrammed design of adaptable soft materials with applications in sensing and actuation. [Preview Abstract] |
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2024 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
100 Motor Pkwy, Suite 110, Hauppauge, NY 11788
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700