APS March Meeting 2011
Volume 56, Number 1
Monday–Friday, March 21–25, 2011;
Dallas, Texas
Session A1: Silicon Qubits
8:00 AM–11:00 AM,
Monday, March 21, 2011
Room: Ballroom A1
Sponsoring
Unit:
DCMP
Chair: Gavin Morley, London Centre for Nanotechnology, University College London
Abstract ID: BAPS.2011.MAR.A1.3
Abstract: A1.00003 : Integrated Quantum Photonics
9:12 AM–9:48 AM
Preview Abstract
Abstract
Author:
Jeremy O'Brien
(University of Bristol)
Of the various approaches to quantum computing [1], photons are
particularly appealing for their low-noise properties and ease of
manipulation at the single qubit level [2]. Encoding quantum
information in photons is also an appealing approach to quantum
communication, metrology (eg. [3]), measurement (eg. [4]) and
other quantum technologies [5]. However, the implementation of
optical quantum circuits with bulk optics has reached practical
limits. We have developed an integrated waveguide approach to
photonic quantum circuits for high performance, miniaturisation
and scalability [6]. Here we report high-fidelity
silica-on-silicon integrated optical realisations of key quantum
photonic circuits, including two-photon quantum interference and
a controlled-NOT logic gate [7]. We have demonstrated controlled
manipulation of up to four photons on-chip, including
high-fidelity single qubit operations, using a lithographically
patterned resistive phase shifter [8]. We have used this
architecture to implement a small-scale compiled version of
Shor's quantum factoring algorithm [9] and demonstrated heralded
generation of tuneable four photon entangled states from a six
photon input [10]. We have combined waveguide photonic circuits
with superconducting single photon detectors [11]. Finally, we
describe complex quantum interference behaviour in multi-mode
inter- ference devices with up to eight inputs and outputs [12],
and quantumwalks of correlated particles in arrays of coupled
waveguides [13].\\[4pt]
[1] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura,
C. Monroe, and J. L. OBrien, Nature 464, 45 (2010).\\[0pt]
[2] J. L. O'Brien, Science 318, 1567 (2007).\\[0pt]
[3] T. Nagata, R. Okamoto, J. L. O'Brien, K. Sasaki, and S.
Takeuchi, Science 316, 726 (2007).\\[0pt]
[4] R. Okamoto, J. L. O'Brien, H. F. Hofmann, T. Nagata, K.
Sasaki, and S. Takeuchi, Science 323, 483 (2009).\\[0pt]
[5] J.L.O'Brien,A.Furusawa, and J.Vuckovic, NaturePho- ton. 3,
687 (2009).\\[0pt]
[6] A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L.
O'Brien, Science 320, 646 (2008).\\[0pt]
[7] A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T.
C. Ralph, M. G. Thompson, and J. L. O'Brien, arXiv:1004.0326\\[0pt]
[8] J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O'Brien,
Nature Photon. 3, 346 (2009).\\[0pt]
[9] A. Politi, J. C. F. Matthews, and J. L. O'Brien, Science 325,
1221 (2009).\\[0pt]
[10] J. C. F. Matthews, A. Peruzzo, D. Bonneau, and J. L.
O'Brien, arXiv:1005.5119\\[0pt]
[11] C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B.
Baek, S. Nam, R. H. Hadfield, and J. L. O'Brien, Appl. Phys.
Lett. 96, 211101 (2010).\\[0pt]
[12] A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L.
O'Brien, arXiv:1005.5119\\[0pt]
[13] A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A.
Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff,
Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O'Brien,
Science 329, 1500 (2009)
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2011.MAR.A1.3