Bulletin of the American Physical Society
60th Annual Meeting of the APS Division of Plasma Physics
Volume 63, Number 11
Monday–Friday, November 5–9, 2018; Portland, Oregon
Session GP11: Poster Session III: Basic Plasma Physics: General; Space and Astrophysical Plasmas; ICF Measurement and Computational Techniques, Direct and Indirect Drive; MIF Science and Technology (9:30am-12:30pm)
Tuesday, November 6, 2018
OCC
Room: Exhibit Hall A1&A
Abstract ID: BAPS.2018.DPP.GP11.49
Abstract: GP11.00049 : Turbulence spreading effects in the Landau-Ginzburg theory of Transport and Relaxation*
Presenter:
Rameswar Singh
(University of California San Diego)
Authors:
Rameswar Singh
(University of California San Diego)
Patrick Henry Diamond
(University of California San Diego)
Gil and Sornette (1996) introduced a 2-field, bi-stable continuum model of avalanching, consisting of a bistable oder parameter(OP) and a control parameter(CP). For sub-critical bifurcation dynamics of OP and diffusive dynamics of CP it was demonstrated that avalanching and other SOC-like dynamics appear when diffusive relaxation of CP is faster than the instability growth rate of the OP and in the other limit of slow diffusion, avalanches comparable to the system size become dominant. A recent experiment (Inagaki et al (2013)) has reported bistable nature of turbulence. This makes this Landau-Ginzburg theory applicable to confinement problems, where the OP is turbulence intensity and CP is mean density. Turbulence spreading then naturally becomes an important concern. Hence Landau-Ginzburg theory à la Gil and Sornette is revisited with turbulence spreading. Novel findings including a quasi-periodic limit cycle state will be presented in detail in the meeting. Special attention will be focused on studies of the effective Prandtl Number dependence, which measures the relative strength of transport and spreading. We aim to understand how spreading modifies the avalanche distribution and spreading.
*This work was supported by US Dept. of Energy under Award No. DE-FG02-04ER54738.
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2018.DPP.GP11.49
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2024 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
100 Motor Pkwy, Suite 110, Hauppauge, NY 11788
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700