Bulletin of the American Physical Society
2021 Fall Meeting of the APS Division of Nuclear Physics
Volume 66, Number 8
Monday–Thursday, October 11–14, 2021; Virtual; Eastern Daylight Time
Session EE: Ultrarelativistic Heavy Ions I
11:45 AM–1:33 PM,
Tuesday, October 12, 2021
Room: Park & Scollay
Chair: Claudia Ratti, University of Houston
Abstract: EE.00005 : Strangeness and electric charge dependent splitting of the rapidity-odd directed flow between quarks and anti-quarks in Au+Au collisions
12:33 PM–12:45 PM
Presenter:
Ashik Ikbal Sheikh
(Kent State University)
Author:
Ashik Ikbal Sheikh
(Kent State University)
Collaboration:
STAR collaboration
We focus on particle species where all constituent quarks are produced, as opposed to possibly transported, and demonstrate using a novel analysis method that the coalescence sum rule holds for hadrons with identical quark content. We examine the coalescence sum rule as a function of rapidity for non-identical quark content having the same mass but different strangeness ($\Delta S$) and electric charge ($\Delta q$). %For non-identical quark combination, a non-zero difference of directed flow, a measure of coalescence sum rule violation, has been observed, we call it directed flow splitting ($\Delta v_1$). The difference in the directed flow of different quark and anti-quark combinations, e.g., $v_1(\Omega^{-}(sss)) - v_1(\bar{\Omega}^{+}(\bar{s}\bar{s}\bar{s}))$, is a measure of coalescence sum rule violation, and we call it directed flow splitting ($\Delta v_1$) between quarks and anti-quarks. This measurement uses the latest high statistics data sample from $\sqrt{s_{NN}}=$ 27 GeV Au+Au collisions where we take advantage of the improved event plane resolution of recently installed Event-Plane Detector (EPD). We measure $v_1$ as a function of rapidity; and then $\Delta S$ and $\Delta q$ dependence of the $\Delta v_1$-slope between produced quarks and anti-quarks in Au+Au collisions at $\sqrt {s_{NN}} =$ 27 GeV and 200 GeV. The $\Delta v_1$-slope increases when $\Delta S$ and $\Delta q$ increase. This $\Delta v_1$-slope signal becomes weaker going from collision energy$\sqrt{s_{NN}}=$ 27 GeV to 200 GeV. We compare our measurements with the Parton-Hadron String Dynamics (PHSD) model + EM-field calculations.
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2024 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
100 Motor Pkwy, Suite 110, Hauppauge, NY 11788
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700