Bulletin of the American Physical Society
71st Annual Meeting of the APS Division of Fluid Dynamics
Volume 63, Number 13
Sunday–Tuesday, November 18–20, 2018; Atlanta, Georgia
Session L07: Nanoflows: Basics and Modeling
4:05 PM–6:41 PM,
Monday, November 19, 2018
Georgia World Congress Center
Room: B212
Chair: Narayana Aluru, University of Illinois Urbana-Champaign
Abstract ID: BAPS.2018.DFD.L07.3
Abstract: L07.00003 : Effect of charge inversion on Poiseuille flow of multivalent electrolyte solutions in nanochannels: an atomistic study*
4:31 PM–4:44 PM
Presenter:
Andrés Rojano
(Univ of Concepcion)
Authors:
Andrés Rojano
(Univ of Concepcion)
Andrés Córdoba
(Univ of Concepcion)
Jens H Walther
(Technical University of Denmark)
Harvey A Zambrano
(Univ Tecnica Federico Santa Maria, Valparaiso)
Miniaturized devices integrated by nanoconduits have a great potential for clinical and biotechnological analysis due to amplified sensibility, faster response and increased portability. In nanoconduits, wherein the electrical double layer can occupy a considerable part of the cross section, Electro-Kinetic Phenomena (EKP) play a key role in determining transport properties of electrolytes. Hence, a comprehensive understanding of EKP and related phenomenology such as charge inversion (CI), is essential to develop more efficient nanodevices. Here, atomistic simulations of Poiseuille flow of aqueous multivalent electrolyte solutions in silica nanochannels are conducted to study the influence of CI on fluid properties. The solutions consist of water as solvent, chloride as co-ion and different amounts of counter-ions i.e. sodium, magnesium, aluminum and calcium. From atomistic trajectories, the relation between the concentration of different cations and, local and effective viscosities is analyzed considering the particular hydration shell around each ionic species. Moreover, the effect of CI on flow velocity, stick boundary condition, shear stress and friction coefficient is examined.
*We thank funding from CONICYT scholarship 21181167, computational support from DTU and NLHPC.
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2018.DFD.L07.3
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2023 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
1 Research Road, Ridge, NY 11961-2701
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700