Bulletin of the American Physical Society
70th Annual Meeting of the APS Division of Fluid Dynamics
Volume 62, Number 14
Sunday–Tuesday, November 19–21, 2017; Denver, Colorado
Session E9: Biological Wakes and FSIBio Fluids: External
|
Hide Abstracts |
Chair: Mehmet Sahin, Istanbul Technical University Room: 502 |
Sunday, November 19, 2017 4:55PM - 5:08PM |
E9.00001: Lagrangian coherent structure analysis in the three-dimensional wake of a bio-inspired trapezoidal pitching panel Rajeev Kumar, Justin King, Melissa Green Three-dimensional Lagrangian analysis using the finite-time Lyapunov exponent (FTLE) field has been carried out on experimentally captured wake downstream of an oscillating trapezoidal panel. The trapezoidal geometry of the panel served as a simple model of a fish caudal fin. Three-dimensional FTLE isosurface appears as a shell wrapped around the wake vortex structures. A slice through the isosurfaces results in the familiar two-dimensional FTLE ridges. The attracting ridges (nFTLE) and the repelling ridges (pFTLE) are near-material lines and their intersections are analogous to topological saddle points in the flow field. A vortex-ring-based wake structure induces a streamwise momentum jet, evolution of which appears to be related to the timing of saddle point generation and behavior at the trailing edge. The time of release of these saddles at the trailing edge inside a pitching period appears to coincide with thrust extrema in similar experimental and numerical studies on foils and fins published in the literature. The merger of a pair of saddles from two consecutively shed vortices at a downstream location coincides with the occurrence of wake breakdown and precedes the formation of interconnected vortex loops and beginning of momentum-deficit zone in the time-averaged sense. [Preview Abstract] |
Sunday, November 19, 2017 5:08PM - 5:21PM |
E9.00002: An Adjoint-Based Approach to Study a Flexible Flapping Wing in Pitching-Rolling Motion Kun Jia, Mingjun Wei, Min Xu, Chengyu Li, Haibo Dong Flapping-wing aerodynamics, with advantages in agility, efficiency, and hovering capability, has been the choice of many flyers in nature. However, the study of bio-inspired flapping-wing propulsion is often hindered by the problem’s large control space with different wing kinematics and deformation. The adjoint-based approach reduces largely the computational cost to a feasible level by solving an inverse problem. Facing the complication from moving boundaries, non-cylindrical calculus provides an easy extension of traditional adjoint-based approach to handle the optimization involving moving boundaries. The improved adjoint method with non-cylindrical calculus for boundary treatment is first applied on a rigid pitching-rolling plate, then extended to a flexible one with active deformation to further increase its propulsion efficiency. The comparison of flow dynamics with the initial and optimal kinematics and deformation provides a unique opportunity to understand the flapping-wing mechanism. [Preview Abstract] |
Sunday, November 19, 2017 5:21PM - 5:34PM |
E9.00003: Abstract Withdrawn
|
Sunday, November 19, 2017 5:34PM - 5:47PM |
E9.00004: A Fluid Structure Algorithm with Lagrange Multipliers to Model Free Swimming Mehmet Sahin, Ezgi DILEK A new monolithic approach is prosed to solve the fluid-structure interaction (FSI) problem with Lagrange multipliers in order to model free swimming/flying. In the present approach, the fluid domain is modeled by the incompressible Navier-Stokes equations and discretized using an Arbitrary Lagrangian-Eulerian (ALE) formulation based on the stable side-centered unstructured finite volume method. The solid domain is modeled by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. In order to impose the body motion/deformation, the distance between the constraint pair nodes is imposed using the Lagrange multipliers, which is independent from the frame of reference. The resulting algebraic linear equations are solved in a fully coupled manner using a dual approach (null space method). The present numerical algorithm is initially validated for the classical FSI benchmark problems and then applied to the free swimming of three linked ellipses. [Preview Abstract] |
Sunday, November 19, 2017 5:47PM - 6:00PM |
E9.00005: A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application Luoding Zhu Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem --- interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. [Preview Abstract] |
Sunday, November 19, 2017 6:00PM - 6:13PM |
E9.00006: Toward Real-Time Classification of Wake Regimes from Sensor Measurements Mengying Wang, Maziar S. Hemati Hydrodynamic signals can transmit information that can be used by marine swimmers to detect disturbances in the local environment. Biological swimmers are able to sense and detect these signals with their hydrodynamic receptor systems. Recently, similar flow sensing systems have been developed with an aim to improve swimming efficiency in human-engineered underwater vehicles. A key part of the sensing strategy is to first classify wake structures in the external fluid, then to execute suitable control actions accordingly. In our previous work, we showed that a variety of 2S and 2P wakes can be distinguished based on time signatures of surface sensor measurements. However, we assumed access to the full dataset. In this talk, we extend our previous findings to classify wake regimes from sensor measurements in real-time, using a recursive Fast Fourier Transform algorithm. Wakes in different dynamical regimes, which may also vary in time, can be distinguished using our approach. Our results provide insights for enhancing hydrodynamic sensory capabilities in human-engineered systems. [Preview Abstract] |
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2024 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
100 Motor Pkwy, Suite 110, Hauppauge, NY 11788
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700