Bulletin of the American Physical Society
APS April Meeting 2022
Volume 67, Number 6
Saturday–Tuesday, April 9–12, 2022; New York
Session K17: Poster Session II (2:00-4:00 pm)
2:00 PM,
Sunday, April 10, 2022
Room: 9th Floor Terrace
Abstract: K17.00002 : Quantifying Uncertainty in Particle Physics using Probabilistic Graphical Models
Presenter:
Christina Peters
Author:
Christina Peters
Measurements in particle physics have inherent uncertainties, which may be caused by intrinsic stochasticity or introduced through the experimental setup. These uncertainties are critical to differentiating scientific theories and are of particular interest when solving inverse problems, where causes are determined from observations – such as localization of an interaction within a detector. Neural networks and some machine learning algorithms can be used to calculate uncertainties using parameter estimation, but are limited in their ability to quantify uncertainties on an event by event basis. Alternatively, probabilistic graphical models use a graph-based representation and make use of the independences between variables to more compactly represent complex probability distributions. We present a method which uses a probabilistic graphical model to infer posterior probabilities and then demonstrate its capabilities using the example of localization of interactions within a detector in a dark matter direct detection experiment.
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2023 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
1 Research Road, Ridge, NY 11961-2701
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700