69th Annual Gaseous Electronics Conference 
Volume 61, Number 9
Monday–Friday, October 10–14, 2016;
Bochum, Germany
Session HT6: Poster Session I
5:30 PM,
Tuesday, October 11, 2016
Room: Foyer
Abstract ID: BAPS.2016.GEC.HT6.111
Abstract: HT6.00111 : Neutrosophic Triplet as extension of Matter Plasma, Unmatter Plasma, and Antimatter Plasma
Preview Abstract
  
 Abstract
  Abstract   
Authors:
Florentin Smarandache
(University of New Mexico)
Mumtaz Ali
(Quaid-i-azam University Islamabad, Pakistan)
A {Neutrosophic Triplet}, is a triplet of the form: 
{\textless a, neut(a), and anti(a) \textgreater , }
where neut(a) is the neutral of a, i.e. an element (different from the 
identity element of the operation *) such that a*neut(a) $=$ neut(a)*a $=$ 
a, 
while anti(a) is the opposite of a, i.e. an element such that a*anti(a) $=$ 
anti(a)*a $=$ neut(a). Neutrosophy means not only indeterminacy, but also 
neutral (i.e. neither true nor false). For example we can have neutrosophic 
triplet semigroups, neutrosophic triplet loops, etc. 
As a particular case of the Neutrosophic Triple, in physics one has 
\textless Matter, Unmatter, Antimatter\textgreater and its corresponding 
triplet \textless Matter Plasma, Unmatter Plasma, Antimatter 
Plasma\textgreater . 
We further extended it to an {{m-}}{valued 
refined neutrosophic triplet}, 
in a similar way as it was done for T$_{\mathrm{1}}$, T$_{\mathrm{2}}$, ...; 
I$_{\mathrm{1}}$, I$_{\mathrm{2}}$, ...; F$_{\mathrm{1}}$, F$_{\mathrm{2}}$, 
... (i.e. the refinement of neutrosophic components). 
We may have a {neutrosophic m-tuple} with respect to the element 
``a'' in the following way: 
( a; neut$_{\mathrm{1}}$(a), neut$_{\mathrm{2}}$(a), ..., 
neut$_{\mathrm{p}}$(a); anti$_{\mathrm{1}}$(a), anti$_{\mathrm{2}}$(a), ..., 
anti$_{\mathrm{p}}$(a) ), 
where m $=$ 1$+$2p, 
such that: 
- all neut$_{\mathrm{1}}$(a), neut$_{\mathrm{2}}$(a), ..., 
neut$_{\mathrm{p}}$(a) are distinct two by two, and each one is different 
from the unitary element with respect to the composition law *; 
- also a*neut$_{\mathrm{1}}$(a) $=$ neut$_{\mathrm{1}}$(a)*a $=$ a, 
a*neut$_{\mathrm{2}}$(a) $=$ neut$_{\mathrm{2}}$(a)*a $=$ a, \textellipsis , 
a*neut$_{\mathrm{p}}$(a) $=$ neut$_{\mathrm{p}}$(a)*a $=$ a; 
- and a*anti$_{\mathrm{1}}$(a) $=$ anti$_{\mathrm{1}}$(a)*a $=$ 
neut$_{\mathrm{1}}$(a), a*anti$_{\mathrm{2}}$(a) $=$ 
anti$_{\mathrm{2}}$(a)*a $=$ neut2(a), \textellipsis , 
a*anti$_{\mathrm{p}}$(a) $=$ anti$_{\mathrm{p}}$(a)*a $=$ 
neut$_{\mathrm{p}}$(a); 
- where all anti$_{\mathrm{1}}$(a), anti$_{\mathrm{2}}$(a), ..., 
anti$_{\mathrm{p}}$(a) are distinct two by two, and in case when there are 
duplicates, the duplicates are discarded.
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2016.GEC.HT6.111