Bulletin of the American Physical Society
55th Annual Meeting of the APS Division of Plasma Physics
Volume 58, Number 16
Monday–Friday, November 11–15, 2013; Denver, Colorado
Session QI3: NIF Indirect Drive
3:00 PM–5:00 PM,
Wednesday, November 13, 2013
Room: Plaza F
Chair: Otto Landen, Lawrence Livermore National Laboratory
Abstract ID: BAPS.2013.DPP.QI3.4
Abstract: QI3.00004 : The High-Foot Implosion Campaign on the National Ignition Facility*
4:30 PM–5:00 PM
Preview Abstract
Abstract
Author:
Omar Hurricane
(Lawrence Livermore National Laboratory)
The 'High-Foot' platform manipulates the laser pulse-shape coming from the National Ignition Facility (NIF) laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This tactic gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. This approach is generally consistent with the philosophy laid out in a recent international workshop on the topic of ignition science on NIF [``Workshop on the Science of Fusion Ignition on NIF,'' \textit{Lawrence Livermore National Laboratory} Report, LLNL-TR-570412 (2012). \textit{Op cit.} V. Gocharov and O.A. Hurricane, ``Panel 3 Report: Implosion Hydrodynamics,'' LLNL-TR-562104 (2012)]. Side benefits our the High-Foot pulse-shape modification appear to be improvements in hohlraum behavior---less wall motion achieved through higher pressure He gas fill and improved inner cone laser beam propagation. Another consequence of the `High-Foot' is a higher fuel adiabat, so there is some relation to direct-drive experiments performed at the Laboratory for Laser Energetics (LLE) [V. Goncharov, et al. APS-DPP (2012)]. In this talk, we will cover the various experimental and theoretical motivations for the High-Foot drive as well as cover the experimental results that have come out of the High-Foot experimental campaign. Most notably, at the time of this writing record DT layer implosion performance with record low levels of inferred mix and excellent agreement with one-dimensional implosion models without the aid of mix models.
*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2013.DPP.QI3.4
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2018 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
1 Research Road, Ridge, NY 11961-2701
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700