# Bulletin of the American Physical Society

# APS April Meeting 2014

## Volume 59, Number 5

## Saturday–Tuesday, April 5–8, 2014; Savannah, Georgia

### Session X13: Formal Theory

10:45 AM–12:33 PM,
Tuesday, April 8, 2014

Room: 101

Sponsoring
Units:
GPMFC DPF

Chair: Nicholas Hadley, University of Maryland

Abstract ID: BAPS.2014.APR.X13.8

### Abstract: X13.00008 : The Yang-Mills Mass Gap Solution

12:09 PM–12:21 PM

Preview Abstract Abstract

#### Author:

Jay R. Yablon

(MIT Alumnus)

The Yang-Mills Mass Gap problem is solved by deriving SU(3)$_{\mathrm{C}}$ Chromodynamics as a corollary theory from Yang-Mills gauge theory. The mass gap is filled from finite non-zero eigenvalues of a configuration space inverse perturbation tensor containing vacuum excitations. This results from carefully developing six equivalent views of Yang-Mills gauge theory as having: 1) non-commuting (non-Abelian) gauge fields; 2) gauge fields with non-linear self-interactions; 3) a ``steroidal'' minimal coupling; 4) perturbations; 5) curvature in the gauge space of connections; and 6) gauge fields related to source currents through an infinite recursive nesting. Based on combining classical Yang-Mills electric and magnetic source field equations into a single equation, confinement results from showing how magnetic monopoles of Yang-Mills gauge theory exhibit color confinement and meson flow and have all the color symmetries of baryons, from which we conclude that they are one and the same as baryons. Chiral symmetry breaking results from the recursive behavior of these monopoles coupled with viewing Dirac's gamma matrices as Hamiltonian quaternions extended into spacetime. Finally, with aid from the ``steroidal'' view, the recursive view of Yang-Mills enables polynomial gauge field terms in the Yang-Mills action to be stripped out and replaced by polynomial source current terms prior to path integration. This enables an exact analytical calculation of a non-linear path integral using a closed recursive kernel and yields a non-linear quantum amplitude also with a closed recursive kernel, thus proving the existence of a non-trivial relativistic quantum Yang--Mills field theory on R$^{\mathrm{4}}$ for any simple gauge group G.

To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2014.APR.X13.8

## Follow Us |
## Engage
Become an APS Member |
## My APS
Renew Membership |
## Information for |
## About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |

© 2018 American Physical Society
| All rights reserved | Terms of Use
| Contact Us

**Headquarters**
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200

**Editorial Office**
1 Research Road, Ridge, NY 11961-2701
(631) 591-4000

**Office of Public Affairs**
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700