Bulletin of the American Physical Society
APS April Meeting 2010
Volume 55, Number 1
Saturday–Tuesday, February 13–16, 2010; Washington, DC
Session X4: The Laser: Historical Perspectives and Impact on Precision Measurements |
Hide Abstracts |
Sponsoring Units: FHP GPMFC Chair: Daniel Kleppner, Massachusetts Institute of Technology Room: Thurgood Marshall North |
Tuesday, February 16, 2010 10:45AM - 11:21AM |
X4.00001: First light : from the ruby laser to nonlinear optics Invited Speaker: Laser action was first demonstrated by Maiman in a flashlamp-pumped ruby crystal in May of 1960. This talk, based in part on personal recollections, recounts some of the research highlights during the two years that followed - a period of exponential growth in the field of quantum electronics, driven by the newly available, unprecedented coherence, power, and monochomaticity of laser light. Active areas from the beginning were new lasers in HeNe and other gas systems, in host crystals with increasingly effective dopants, and in glass. Modes in open resonators became understood, as did the surprising granularity of laser light An important step was the Q-switch, enabling megawatt lasers and providing a new tool for the study of dielectrics at high optical fields. The field of nonlinear optics opened up with experimental discoveries including optical second harmonic generation, two-photon absorption, phase matching and stimulated Raman scattering. A key to subsequent progress was a comprehensive quantum mechanical theory that provided a general description of nonlinear optical processes. The end of the two-year period covered here coincided with two advances which were to shape the future role of lasers in technology and science: the first semiconductor lasers; and a theoretical description of states of light having truly quantum properties, properties not evident in laser light up to that time. [Preview Abstract] |
Tuesday, February 16, 2010 11:21AM - 11:57AM |
X4.00002: Freedom from band-gap slavery: from diode lasers to quantum cascade lasers Invited Speaker: Semiconductor heterostructure lasers, for which Alferov and Kromer received part of the Nobel Prize in Physics in 2000, are the workhorse of technologies such as optical communications, optical recording, supermarket scanners, laser printers and fax machines. They exhibit high performance in the visible and near infrared and rely for their operation on electrons and holes emitting photons across the semiconductor bandgap. This mechanism turns into a curse at longer wavelengths (mid-infrared) because as the bandgap, shrinks laser operation becomes much more sensitive to temperature, material defects and processing. Quantum Cascade Laser (QCL), invented in 1994, rely on a radically different process for light emission. QCLs are unipolar devices in which electrons undergo transitions between quantum well energy levels and are recycled through many stages emitting a cascade of photons. Thus by suitable tailoring of the layers' thickness, using the same heterostructure material, they can lase across the molecular fingerprint region from 3 to 25 microns and beyond into the far-infrared and submillimiter wave spectrum. High power cw room temperature QCLs and QCLs with large continuous single mode tuning range have found many applications (infrared countermeasures, spectroscopy, trace gas analysis and atmospheric chemistry) and are commercially available. [Preview Abstract] |
Tuesday, February 16, 2010 11:57AM - 12:33PM |
X4.00003: Developing Stabilized Lasers, Measuring their Frequencies, demoting the Metre, inventing the Comb, and further consequences Invited Speaker: Michelson's 1907 proposal to define the SI Metre in terms of an optical wavelength was realized only in 1960, based on a $^{86}$Krypton discharge lamp. The same year saw the cw HeNe laser arrive and a future redefinition based on laser technology assured. Separation in the late 60's of the laser's gain and spectral-reference-gas functions led to unprecedented levels of laser frequency stability and reproducibility. In addition to HeNe:CH$_{4}$ system at 3392 nm and HeNe:I$_{2}$ at 633 nm, systems at 514 nm and 10600 nm were studied. Absolute frequency measurement became the holy grail and some NBS team experiences will be shared. We measured both frequency and wavelength in 1972, and so obtained a speed of light value, improved 100-fold in accuracy. During the next decade, the NBS value of $c$ was confirmed by other national labs, and frequency metrology was extended to the 473 THz (633 nm) Iodine-based wavelength standard. This frequency to $\sim $10 digit accuracy was obtained in 1983, thus setting the stage for redefining the SI Metre. By consensus choice the value 299 792 458 m/s was adopted for the speed of light, effectively reducing the Metre to a derived SI quantity. Knowledge of the frequency of the particular laser being utilized was controlled by International intercomparisons, but the need for a fast and accurate means to make these laser frequency measurements was obvious. Creative proposals by H\"{a}nsch and by Chebotayev were to use ultra-fast repetitive pulses to create an ``Optical Comb,'' but it was years before any technical basis existed to implement their Fourier dreams. Finally, in 1999 the last needed capability was demonstrated -- continuum production at 100 MHz rates and non-destructive power levels. By May 2000 phase-locked combs were operational in both Garching and Boulder, substantially accelerated by their collaborative interactions. Within 18 months all the known proposed ``optical frequency standards'' had been accurately measured via Comb techniques. [Preview Abstract] |
Follow Us |
Engage
Become an APS Member |
My APS
Renew Membership |
Information for |
About APSThe American Physical Society (APS) is a non-profit membership organization working to advance the knowledge of physics. |
© 2025 American Physical Society
| All rights reserved | Terms of Use
| Contact Us
Headquarters
1 Physics Ellipse, College Park, MD 20740-3844
(301) 209-3200
Editorial Office
100 Motor Pkwy, Suite 110, Hauppauge, NY 11788
(631) 591-4000
Office of Public Affairs
529 14th St NW, Suite 1050, Washington, D.C. 20045-2001
(202) 662-8700